An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements
نویسنده
چکیده
The numerical solution for a class of sub-diffusion equations involving a parameter in the range −1 < α < 0 is studied. For the time discretization, we use an implicit finite-difference Crank–Nicolson method and show that the error is of order k2+α , where k denotes the maximum time step. A nonuniform time step is employed to compensate for the singular behaviour of the exact solution at t = 0. We also consider a fully discrete scheme obtained by applying linear finite elements in space to the proposed time-stepping scheme. We prove that the additional error is of order h2 max(1, log k−1), where h is the parameter for the space mesh. Numerical experiments on some sample problems demonstrate our theoretical result.
منابع مشابه
A New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...
متن کاملThe new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملADI Finite Element Method for 2D Nonlinear Time Fractional Reaction-Subdiffusion Equation
In this paper, an alternating direction Galerkin finite element method is presented for solving 2D time fractional reaction sub-diffusion equation with nonlinear source term. Firstly, one order implicit-explicit method is used for time discretization, then Galerkin finite element method is adopted for spatial discretization and obtain a fully discrete linear system. Secondly, Galerkin alternati...
متن کامل